If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x=31
We move all terms to the left:
x^2-18x-(31)=0
a = 1; b = -18; c = -31;
Δ = b2-4ac
Δ = -182-4·1·(-31)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8\sqrt{7}}{2*1}=\frac{18-8\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8\sqrt{7}}{2*1}=\frac{18+8\sqrt{7}}{2} $
| 2(5a+1)=2(a+1 | | 5s^2-14-240=0 | | 5=6k(-3k-4) | | -6-6x=-3x-21 | | 2x+10=5x+37 | | X-2=4x-8 | | 8x+12=10x−24 | | 7x-1=-17-x | | -6(9x+5)-3x+4x=-404+x | | 30+6w=11w | | 7x-1=-17-7 | | 28-4w=-8 | | 28-4x=-8 | | x+812=2(x+3)18 | | 9x-25=6x+18 | | (x-4)/2=(2-x)/3 | | r/5-65=-1 | | 91-y=161 | | 47=159-y | | 32+90m2=180 | | j2+13j+22=0 | | 2t+9=20 | | (3x+15)=(2x+25) | | 6p-2=3p+4 | | 5^2x-4=625 | | 3x−15=2x+25 | | -7x-8x=-8x-3x-16 | | 3(2x+4)=-2(x-4)-4 | | 24=g2-14 | | 5(3x+10)=3(5x+18) | | g÷2-14=24 | | -9x=15x+24 |